Article 6220

Title of the article



Esaulov Anton Sergeevich, Candidate of biological sciences, associate professor, sub-department of microbiology, epidemiology and infectious diseases, Penza State University (40 Krasnaya street, Penza, Russia), E-mail:
Malysheva Elena Aleksandrovna, Candidate of biological sciences, associate professor, sub-department of general biology and biochemistry, Penza State University (40 Krasnaya street, Penza, Russia), E-mail:
Babeshko Kirill Vladimirovich, Candidate of biological sciences, associate professor, sub-department of general biology and biochemistry, Penza State University (40 Krasnaya street, Penza, Russia), E-mail:
Tsyganov Andrey Nikolaevich, Candidate of biological sciences, leading researcher, sub-department of general ecology and hydrobiology, Lomonosov Moscow State University (building 12, 1 Leninskiye Gory, Moscow, Russia), E-mail:
Belyakova Ol'ga Ivanovna, Candidate of biological sciences, head of the unit of monitoring and rating research, the Office of strategic planning and quality management system, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: 
Mazei Yuri Aleksandrovich, Doctor of biological sciences, professor, sub-department of general ecology and hydrobiology, Lomonosov Moscow State University (building 12, 1 Leninskiye Gory, Moscow, Russia), E-mail:

Index UDK





Background. Testate amoebae are an important component of marsh, freshwater and soil ecosystems. Many species have clear environmental preferences, making them useful bioindicators. Currently, more and more investigations are devoted to the study of the structural organization of the testate amoebae communities in different types of biotopes and to the identification of the main causes of changes in the species composition and abundance. However, issues related to the identification of mechanisms that ensure the coexistence of closely related species still remain without due attention.
Materials and methods. The study was conducted on the aapa moor, located in the northern subzone of the taiga in the vicinity of the Pertsov White Sea Biological Station, Moscow State University (WSBS MSU). We studied the horizontal distribution of testate amoebae on a macro- (40 × 150 m), meso- (10 × 10 cm), microscale (3 × 3 cm), and vertical distribution in the deep of the sphagnum.
Results. In 86 samples revealed 11 574 tests belonging to 109 species and subspecies from 33 genera. Representatives of the order Arcellinida make up a significant share in the testate amoebae community (from 36 to 63 % of the total abundance in different samples). Testate amoebae are characterized by rare joint occurrence in samples throughout the whole aapa moor. The average index of similarity of distributions of the most abundant species (more than 5 % of the total abundance) is 0,2 (Brey – Curtis index). The distribution of the amoebae in the area of 100 cm2 was significantly more homogeneous (the average Brey – Curtis index is 0,78). The distribution of amoebae on a microscale (10 cm2) was very heterogeneous: some species (Hyalosphenia papilio, Heleopera rosea and Heleopera sphagni) show high similarity indices of 0,7–0,78, others (Centropyxis elongata) are characterized by a low level of overlap (average 0,26). The average index of similarity in a microscale is 0,47. The vertical divergence of species is very weak (the average Brey – Curtis similarity index is 0,75).
Conclusions. The testate amoebae community is structured mainly due to the differentiation of ecological niches of species on the scale of the whole aapa-mire, as well as individual groups diverge on a microscale. The role of horizontal distribution at the mesoscale and vertical distribution in the divergence of spatial components of ecological niches is significantly lower. 

Key words

testate amoebae, protist, wetland ecosystems, coexistence of species, community structure 


 Download PDF


1. Adl S. M., Simpson A. G. B., Lane C. E., Luke J., Bass D., Bowser S. S., Brown M. W., Burki F., Dunthorn M., Hampl V., Heiss A., Hoppenrath M., Lara E., le Gall L., Lynn D. H., McManus H., Mitchell E. A. D., Mozley-Stanridge S. E., Parfrey L. W., Pawlowski J., Rueckert S., Shadwick L., Schoch C. L., Smirnov A., Spiegel F. W. Journal of Eukaryotic Microbiology. 2012, vol. 59, no. 5, pp. 429–514.
2. Mazei Yu. A., Tsyganov A. N. Presnovodnye rakovinnye ameby [Freshwater testate amoebae]. Moscow: Tovarishchestvo nauchnykh izdaniy KMK, 2006, 300 p. [In Russian]
3. Patterson R. T., Lamoureux E. D. R., Neville L. A., Macumber A. L. Microbial Ecology. 2013, vol. 65, no. 3, pp. 541–554.
4. Wall A. A. J., Magny M., Mitchell E. A. D., Vannière B., Gilbert D. Journal of Quaternary Science. 2010, vol. 25, no. 6, pp. 945–956.
5. Tsyganov A. N., Komarov A. A., Mazei N. G., Borisova T. V., Novenko E. Yu., Mazei Yu. A. Zoologicheskiy zhurnal [Zoological journal]. 2020, vol. 99, no. 5, pp. 586–598. [In Russian]
6. Novenko E. Yu., Tsyganov A. N., Babeshko K. V., Payne R. J., Li J., Mazei Yu. A., Olchev A. V. Geography, Environment, Sustainability. 2019, vol. 12, no. 4, pp. 188–202.
7. Mazei Yu., Chernyshov V. A., Bukhkalo S., Mazei N., Creevy A., Payne R. J. Acta Protozoologica. 2017, vol. 56, no. 1, pp. 59–70.
8. Tsyganov A. N., Embulaeva E. A., Mazei Yu. A. Protistology. 2012, vol. 7, no. 2, pp. 71–78. [In Russian]
9. Malysheva E. A., Mazei N. G., Shapovalov M. I., Saprykin M. A., Mazei Yu. A. Inland Water Biology. 2017, vol. 10, no. 1, pp. 92–96.
10. Payne R. J., Creevy A., Malysheva E., Ratcliffe J., Andersen R., Tsyganov A. N., Rowson J. G., Marcisz K., Zielińska M., Lamentowicz M., Lapshina E. D., Mazei Yu. A. Soil Biology and Biochemistry. 2016, vol. 98, pp. 18–21.
11. Roe H. M., Elliott S. M., Patterson R. T. European Journal of Protistology. 2017, vol. 60, pp. 13–27.
12. Mazei Yu. A., Embulaeva E. A. Aridnye ekosistemy [Arid ecosystems]. 2009, vol. 15, no. 1 (37), pp. 13–23. [In Russian]
13. Booth R. K., Sullivan M. E., Sousa V. A. Ecoscience. 2008, vol. 15, no. 2, pp. 277–289.
14. Charman D. J., Warner B. G. Canadian Journal of Zoology. 1992, vol. 70, no. 12, pp. 2474–2482.
15. Jassey V. E. J., Chiapusio G., Mitchell E. A. D., Binet P., Toussaint M.-L., Gilbert D. Microbial Ecology. 2011, vol. 61, no. 2, pp. 374–385. 16. Mitchell E. A. D., Borcard D., Buttler A. J., Grosvernier Ph., Gilbert D., Gobat J.-M.
Microbial Ecology. 2000, vol. 39, no. 4, pp. 290–300.
17. Opravilová V., Hajek M. Acta Protozoologica. 2006, vol. 45, no. 2, p. 191.
18. Heal O. W. Oikos. 1962, pp. 35–47.
19. Meisterfeld R. Archiv für Hydrobiologie [Archive for hydrobiology]. 1977, vol. 79, no. 3, pp. 319–356. 


Дата создания: 14.07.2020 09:47
Дата обновления: 22.07.2020 09:52